8yl (gwm g 4l

AN oo VY

o 3l eolainl g i el ¢ WIS (a8 STy (gl delip yiiigl @

Static & by o 55
var ¢

null e

Boxing ¢
Unboxing °

isand as ¢

Write a sample code

* Define class point

* New an object from point

* Overload constructor (default not available)

* Write default constructor

* Call constructors

* Public and private Data fields

e Public and private methods

e Public method use private data (and method)
 Static data and method (count the objects)

* Distance between two points

Static fields

e Static method and data
* Only accessed by class name (not instance)

var

 the var keyword causes the compiler to create a variable of the same
type as the expression used to initialize it.

e Vari=42;
* Var point = new point();

Copying value type variables and classes

 value types
* int, float, double, and char

* have a fixed size, and when you declare a variable as a value type, the compiler
generates code that allocates a block of memory big enough to hold a corresponding

value

* Class types
* Point
* is allot a small piece of memory that can potentially hold the address of (or a
reference to) another block of memory containing a Point. (An address specifies the

location of an item in memory.)
 The memory for the actual Point object is allocated only when the new keyword is
used to create the object.

* Aclassis an example of a reference type

example

inti=42;
int copyi =1;
i++;

4

Circle c = new Circle(42);
Circle refc = c;

) int i
int i;
1= 42; 42
int copyi; int copyi
copyi = 1i; 42
Circle c
Circle C;

c = new Circle(42);

Circle refc;
refc = ¢;

ki

@

ircle refc §
@

Copying reference types and data privacy

* to copy the contents of a Circle object, c, into a different Circle object,
refc, instead of just copying the reference, you must make refc refer
to a new instance of the Circle class and then copy the data, field by
field, from c into refc

e Private filed ?

* a class could provide a Clone method that returns another instance of
the same class but populated with the same data

Clone method for the Circle class

class Circle

{
private int radius;
// Constructors and other methods omitted

public Circle Clone()
{

// Create a new Circle object
Circle clone = new Circle(Q);

// Copy private data from this to clone
clone.radius = this.radius;

// Return the new Circle object containing the copied data
return clone;

deep copy and shallow copy

* one or more fields are themselves reference types
* reference types also need to provide a Clone method

 Shallow copy

* the Clone method simply copies references

* Deep copy
* the Clone method is used for fields that are reference types

Null value

* In C#, you can assign the null value to any reference variable

* The null value simply means that the variable does not refer to an object in
memory

Circle c = new Circle(42);

Circle copy; // Uninitialized !!!

%%.(copy == // only assign to copy if it is uninitialized, but what goes here?)
: copy = C; // copy and c refer to the same object

}

Circle ¢ = new Circle(42);
Circle copy = null; // Initialized

if (copy == null)
{

copy = C; // copy and c refer to the same object

12

Memory organization (for program execution)

e Stack

* In a block of code: the memory required for parameters and local variables is always
acquired from the stack

* When finish: released back to the stack
* Method parameters and local variables on the stack have a well-defined life span:
they come into existence when the method starts, and they disappear as soon as the
method completes
* Heap
* the memory required to build the object is always acquired from the heap.
* same object can be referenced from several places by using reference variables.

* more indeterminate life span; an object is created by using the new keyword, but it
disappears only sometime after the last reference to the object is removed

13

Example of life span and memory

organization

(5K

void Method(int param)

{

Circle c;
c = new Circle(param);

int param
[42 |
Circle ¢

14

The System.Object class

* One of the most important reference types in the .NET Framework is
the Object class in the System namespace
* all classes are specialized types of System.Object (inheritance)
* you can use System.Object to create a variable that can refer to any reference
type
* object keyword as an alias for System.Object

15

object

[stack]

Circle c;
c = new Circle(param);

object o;
O = C.

Circle c

@

object o

[e |

16

Boxing

automatic copying of an item from the stack to the heap is called

boxing
STACK | G
int i = 42; 1t
. . 42
object o = 1;
object o
A diagram illustrating how a value type is boxed when it is
accessed through a reference.
J

Boxing

* Important If you modify the original value of the variable i, the value
on the heap referenced through o will not change. Likewise, if you
modify the value on the heap, the original value of the variable will
not change.

Unboxing (must use what is known as a cast)

inti=o; X

inti=42;
object o =i; // boxes
i = (int)o; // compiles okay

Valid unboxing

object o = 42; object o

int 1 = (Int)o;

unboxing

20

InvalidCastException

T

Circle ¢ new Circle(42);

object o = c;

int i = (int)o;

Circle

42 =“E'
object o E
e |
int 1 -
T

+
throw InvalidCastException

21

